

High Performance Cutting Tools

PRODUCT PORTFOLIO

Forbes & Company Limited

HIGH PERFORMANCE MACHINE TAPS

- Manufactured from High Grade HSSE & HSSE PM Steel
- Consistent and tight thread tolerance
- High operating parameters suitable for CNC / SPM Machines
- Material specific tool geometry for optimal performance
- Surface treatment to suit application material for greater wear & heat resistance

SA - SPIRAL POINTED TAPS

 Material specific angular geometry ensures chips are pushed downwards

Axial through coolant taps

SERIES

SA: General steel, SG Iron

SAF: Forged steel

SAH: Alloy and Hardened Steel

SAS: Stainless Steel
SAI: Super Alloys

SB - SPIRAL FLUTED TAPS

- · Specific flute design for excellent chip evacuation
- Helix angle as per material category
- Radial through coolant taps

SERIES

SB: General steel, SG Iron, Aluminium

SBF: Forged steel
SBS: Stainless steel

SBI: Super alloys

SC - STRAIGHT FLUTED TAPS

- · Cutting edge geometry production short chips
- Special process for stress relieving on cutting edge

Radial and axial through coolant taps

SERIES

SC: Cast iron, SG Iron, Aliminium Casting

SCC: Ductile Cast Iron

SCF: Forged steel

SCH: Hardened steel

SD - FORMING TAPS

- Optimized lobe form reduces friction
- Chamfer geometry for uniform load distribution
- Radial and axial through coolant taps

SERIES

SD: Aluminium and aluminium alloys

SDF: Steel and Forged steel

Standards	DIN, ISO, JIS, ANSI
Thread form	METRIC, UNC, UNF, BSP
Range	3mm - 25mm

SA	SPIRAL POINT	sc	STRAIGHT FLUTE
SB	SPIRAL FLUTE	SD	ROLL TAP OR FORMING TAP

COATING

1	BF	Bright Finish	5	TiCN	Titanium Carbo Nitride Coating
3	TiN	Titanium Nitride Coating	6	TiAIN + WC/C	Hardlube
4	TiAlN	Titanium Aluminium Nitride Coating	7	AlCrN	HELICA

TAP SELECTION CHART

Series	SA1	SA3	SA4	SB1	SB3	SB4	SD4	SAF3	SAF5	SAF7	SAF5	SAF7	SBF3	SBF5	SBF7	SBF7TC
	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral		Spiral	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral
Execution	Point	Point	Point	Flute	Flute	Flute	Forming	Point	Point	Point	Point	Point	Flute	Flute	Flute	Flute
Tool Material	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE-PM	HSSE-PM	HSSE	HSSE	HSSE	HSSE
Helix	-	-	-	35	35	35	-	-	-	-	-	-	15	15	15	15
Coating	Bright	TiN	TiAIN	Bright	TiN	TiAIN	TiAIN	TiN	TiCN	AlCrN	TiCN	AICrN		TiCN	AICrN	AlCrN
Chamfer	B/4-4.5P	B/4-4.5P	B/4-4.5P	C/2-3P	C/2-3P	C/2-3P	C/2-3P	B/4-4.5P	B/4-4.5P	B/4-4.5P	B/4-4.5P	B/4-4.5P	C/2-3P	C/2-3P	C/2-3P	C/2-3P
Hole Type	Through	Through	Through	Blind/ Through	Blind/ Through	Blind/ Through	Through / Blind	Through	Through	Through	Through	Through	Blind/ Through	Blind/ Through	Blind/ Through	Blind
Coolent Feed	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes
Oil Groove	-	-	-	-	-	-	Yes	-	-	-	-	-	-	-	-	-
PO	10-12	15-20	20-25	8-12												
P1		15-20	15-20	8-12	10-15	15-20	15-20	15-20	15-25							
P2			15-20		8-15	10-18	12-15	15-20	15-25	15-25	25-30	25-30	18-22	18-22	18-22	18-22
Р3			8-12						15-20	15-20	20-25	20-25		16-20	16-20	16-20
P4												12-16				
M1																
M2																
М3																
K 1			30-35			10-20										
K2		15-20	20-25		8-12	8-12										
К3		12-15														
N1	15-20			15-25												
N2	15-20			15-25												
N3					15-20											
N4	25-30				20-25											
S 1																
\$2																
S 3																
S4																

TAP SELECTION CHART

SCF5	SDF5	SAS3	SAS5	SAS6	SBS5	SBS6	SBS5	SAI6	SBI6	SC3	SC4	SC4TC	SC4	SC4TC	SD1
Straight Flute	Forming	Spiral Point	Spiral Point	Spiral Point	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Point	Spiral Flute	Straight Flute	Straight Flute	Straight Flute	Straight Flute	Straight Flute	Forming
HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE	HSSE-PM	HSSE-PM	HSSE-PM	HSSE	HSSE	HSSE	HSSE-PM	HSSE-PM	HSSE
-	-	-	-	-	45	45	45	-	-	-	-	-	-	-	-
TiCN	TiCN	TiN	TiCN	TiAIN + WC/C	TiCN	Tialn + WC/C	TiCN	Tialn + WC/C	TiAIN + WC/C	TiN	TiAIN	TiAIN	TiAIN	TiAIN	Bright
E/1-1.5P	C/2-3P	B/4-4.5P	B/4-4.5P	B/4-4.5P	C/2-3P	C/2-3P	C/2-3P	B/4-4.5P	C/2-3P	E/1-1.5P	E/1-1.5P	E/1-1.5P	E/1-1.5P	E/1-1.5P	C/2-3P
Through/ Blind	Through / Blind	Through	Through	Through	Blind/ Through	Blind/ Through	Blind/ Through	Through	Blind/ Through	Through/ Blind	Through/ Blind	Blind	Through/ Blind	Blind	Through / Blind
No	No	No	No	No	No	No		No	No	No	No	Yes	No	Yes	No
-	Yes	-	-	-	-	-	-	-	-	-	-	-	-	-	Yes
	15-20														
10-14	12-16														
8-12															
		5-10	5-10	8-14	5-8	10-12	10-12								
			4-6	8-10	4-6	8-10	8-10								
				4-8		6-8	6-8								
										25-30	30-40	30-40	40-50	40-50	
										15-20	20-25	20-25	30-40	30-40	
											12-15	15-20	25-30	25-30	
															20-25
										25-30					20-25
										20-25					
								10-15	6-10						
								6-12	5-8						
								8-12	6-8						
								4-6	3-5						

TAP SELECTION CHART

NEW LAUNCH

SD3 SD1 SD3 SBC4 SBC5 SBC5TC SCC4 SCC5 SCC5TC SBS3 SDF3 SDF5 Forming Forming Forming Spiral Flute Spiral Flute Straight Flute Straight Flute Spiral Flute Forming Forming <th></th> <th></th>		
Forming Forming Forming Spiral Flute Spiral Flute Straight Flute Straight Flute Spiral Flute Forming	SAH5	SCH5
8° 8° 8° 45° TIN TIN TIN TICN TICN TICN TICN TICN TI	Spiral Point	Straight
TiN Bright TiN TiAIN TiCN TiAIN TiCN <	HSSE-PM	HSSE-PM
C/2-3P C/2-3P C/2-3P C/2-3 Dind/ Blind/ Blind/ Blind/ Blind/ Blind/ Blind/ Blind/ Blind/ Blind/	-	-
Through / Through / Through / Blind/	TiCN	TiCN
Through / Through / Blind Blind Blind Blind/	C/4-4.5	D/3.5-5
	Through	Blind/ Through
No No No No No Yes No No No No No	No	No
Yes - - - - - - Yes Yes Yes Yes	-	-
15-20 20-25		
15-20 25-20 15-20 15-20		
12-15 15-18 12-15 12-15		
	18-22	16-20
	8-10	6-8
10-12		
8-10		
6-8		
20-25 20-25 20-25 30-35 30-35 35-40		
20-25 20-25 20-25 30-35 30-35 35-40		
25-30 20-25 25-30		
25-30		
20-25 20-25		

NIB TAPS

High performance Nut taps for Mild Steels, High tensile Steel and Stainless Steel

- Manufactured from High Grade HSSE Steel
- Tight thread tolerance for better consistency
- Special treatment for stress relieving

MATERIAL

HSSE

RANGE

Metric – M3 – M24 BSW/UNC/UNF – 3/16" – 1"

SURFACE TREATMENT

TiN/TiCN

HOLLOW TAPS (CROWN TAPS)

- Special crown-shaped front portion of this tool provides excellent accuracy even in the first stage of the cutting process
- More cutting teeth than conventional tap ensure perfect load distribution. Extra clean and accurate threads can be cut in this way
- The special hollow face crown-shape allows chips to accumulate within the tap & can be tapped upto 2xD in blind holes without having to empty the chips.
- Maximum self-control achieved due to the unfluted guiding-part, results in a high process reliability

FEATURES

- Tapping up to 2D in blind hole
- More cutting teeth ensures perfect chip distribution
- Maximum self control due to non fluted guide portion

WORKPIECE MATERIAL

- Free Cutting Steel
- Structural Steel
- Carbon Steel
- Alloy Steel < 850 M/mm2
- Free Machining Stainless Steel
- Spheroidal Graphite
- Malleable Cast Iron

HSS HAND AND SHORT / LONG MACHINE TAPS

- Manufactured in state of art CNC machines
- HSS- M2 steel Straight Flute, Spiral Pointed taps and Long Shank Taps

RANGE

Metric (Coarse and Fine Pitch) M10- M180 Imperial 1/16"- 6"

PIPE THREADS

1/16"- 4"

THREAD FORM

Metric, BSW, BSF, BSCY, BA, BSB, ME, BSCON, UNC, UN, UNS, BSP, BSPT, NPT, NPTF, NPSI, NPSF

HAND TAPS (SERIAL FORM)

Super Alloys, Hardened Steel and Stainless Steel

- Material HSS M42 and HSSE/HSS M42 Steel
- Set of 3 (OR) Set of 4 TiN coated
- Inconel, Titanium, Nickel based Alloy, Tool Steel, Maraging Steel, Die Steel, Stainless Steel
- Distribution of cutting load- Thread accuracy
- Thread accuracy and long life

RANGE

M2.5 - M120

CARBON STEEL TAPS

All taps manufactured from first grade High Carbon Steel

- Heat treated in atmospheric controlled furnace with modern timers and temperature controllers
- Every tap passes through stringent inspection tests

STANDARDS

Metric & British standard tap – BS949:1951 American standard taps – ANSI 94.9- 1951

RANGE

Metric – M2 – M52 (Coarse & Fine pitch) Imperial – 1/16" – 2" Pipe threads- 1/8" – 2"

THREAD FORMS

Metric (Coarse & Fine)/BSW, BSF, BA, BSB, BSCY, ME, BSCON/UNC, UNF, UN, UNS, BSP, BSPT, NPT, NPS

LH taps can be supplied against requirement

THREADING DIES & DIE NUTS (HSS & CARBON STEEL)

- HSS Dies manufactured of HSS M2 Steel
- Carbon Steel Dies manufactured of High Carbon Steel
- High Carbon Steel Split Round Dies (BS 1127:1976)
- HSS Ground Dies (DIN 223)
- High Carbon Steel Hexagonal Die Nuts
- HSS Hexagonal Die Nuts

RANGE

OD - 13/16"- 4"

SPLIT DIES

Metric – M2- M60 (Fine and Coarse pitch) Imperial – 1/8"- 1" Pipe thread – 1/8" – 2"

SOLID ROUND DIES

Metric M2- M24 Imperial 5/32"- 3/4"

HEXAGONAL DIE NUTS

A/F - 0.710"-3.890" Metric- M3- M56 Imperial - 1/8" - 2 1/4" Pipe thread - BSP- 1/8"- 2"

THREAD FORM

Metric (Coarse & Fine) / BSW, BSF, BSB, BSCY, ME, BA, WF, BSP, BSPT/ UNC, UNF, NPT

CARBIDE MILLING TOOLS

END MILLS FOR HARDENED STEELS 45-70 HRC

PROTON HD

FEATURES

- Superior nano grain structure raw material
- Multilayer coating for Hardened moulds
- Ideal Chip flow geometry
- Close tolerance end mills for finishing for higher accuracy

FUNCTIONS & BENEFITS

- No EDM required as milling is a much faster operation
- Operates at high cutting speeds on hardened materials

- Polishing for hardened dies can be minimized
- No need of multiple setups, Job can be finished with single clamping and it is much easy to achieve high accuracy
- Higher Tool Life and consistency
- High Productivity

RANGE

- Standard 0.1mm- 25mm available in stub/ standard/long/extra long/ long reach
- Specials 0.1mm- 32mm available in stub/ standard/long/extra long/ long reach

END MILLS FOR STAINLESS STEEL, SUPER ALLOYS & EXOTIC MATERIALS

PROTON HD

FEATURES

- Variable pitch and Variable helix
- Stable core geometry
- Optimized centre cutting geometry
- New generation coating

FUNCTIONS & BENEFITS

- Higher productivity
- Ability to work at high Parameters due to the reinforced core.

- Superior Tool Life.
- Excellent Surface Finish.

RANGE

- Standard Roughing 3mm- 20mm / Standard Finishing 0.4mm-12mm
- Special- 0.4mm-25mm

END MILLS FOR TROCHOIDAL MILLING

PROTON HD

FEATURES

- Robust Core Design
- Multiflutes for High Productivity
- Available with alternate coating

FUNCTIONS & BENEFITS

- Operates at high cutting speeds
- Geometry programmed to suit adequate material removal at various enagemnet angles
- · Highest dynamic speed rates

- Highest material removal rate
- Least cutting forces
- Prolonged tool life due to reduced shock
- High savings in cycle time when compared to the conventional milling strategy

RANGE

- Standard Roughing 3mm-20mm
- Special- 3mm-25mm

END MILLS FOR GRAPHITE MILLING

PROTON HD

FEATURES

- Superior nano grain structure raw material
- Multilayer coating for Hardened moulds and Diamond Coating for graphite milling
- Wear resistant grade
- Ideal Chip flow geometry
- Close tolerance end mills for finishing for higher accuracy
- Special Roughing Pitch for graphite roughers

FUNCTIONS & BENEFITS

- No EDM required as milling is a much faster operation
- Operates at high cutting speeds on hardened materials

- Polishing for hardened dies can be minimized
- No need of multiple setups, Job can be finished with single clamping and it is much easy yto achieve high accuracy
- Higher Tool Life and consistency
- High Productivity
- Superior Surface finish in graphite moulds

RANGE

- Standard 0.1mm- 25mm available in stub/standard/long/extra long/ long
- Specials 0.1mm-32mm available in stub/standard/long/extra long/ long

END MILLS FOR HIGH TEMPERATURE ALLOYS (TURBO - TR)

F177TR / F178TR / F175TR

FEATURES

- Variable pitch and Variable helix
- Stable core geometry
- Optimized centre cutting geometry
- New generation coating
- Available in 4 Flutes, 5 Flutes, 6 Flutes and 7 Flutes
- Available with Neck options

FUNCTIONS & BENEFITS

- Higher productivity
- Reinforced core gives the ability to work at higher parameters.

- Superior Tool Life.
- Excellent Surface Finish.
- High MRR

RANGE

- Standard 6mm 20mm
- Specials 1.5mm 25.4mm

ROUGHERS AND FINISHERS (CHIP BREAKER)

F192CB / F193CB / F194CB

FEATURES

- 3-4 Flutes
- Center Cutting
- Sinosoidal Pitch
- Superior Coating

FUNCTIONS & BENEFITS

- High MRR
- Stable cutting at high cutting speeds
- Superior Tool Life

RANGE

- Standard 8mm 20mm available in standard
- Specials 6mm 25.4mm available in standard

RAZOR CUT SERIES FOR ALUMINIUM

FEATURES

- 3 Flutes
- Center Cutting
- Coarse Pitch
- Roughing for Aluminium
- Uncoated

FUNCTIONS & BENEFITS

- High MRR
- Excellent for roughing and finishing of Alumnium
- Superior Tool Life

RANGE

- Standard 6mm 25mm available in regular/long reach
- Specials 4mm 25mm available in regular/long reach

CBC SERIES coarse pitch roughing for Aluminium

CBCH SERIES chamfered pitch roughing for Aluminium

wiper design finishing for Aluminium

3FWFXL SERIES wiper design finishing for Aluminium

3FWFCR SERIES wiper design finishing for Aluminium

2FWF SERIES wiper design finishing for Aluminium

GENERAL PURPOSE FOR END MILL

FEATURES

- Excellent choice for application on variety of material
- Special nano grain carbide raw material with an optimum balance of hardness and toughness
- Special geometry better feed rates and longer tool life
- High performance TiAIN coating for superior wear resistance

FUNCTIONS & BENEFITS

- Best value for money
- Best Suitable for Steel, Stainless Steel, Cast iron, Aluminium

RANGE

- Standard 1mm to 25mm available in stub/standard/long/extra long/ long reach
- Specials 0.3mm to 32mm available in stub/standard/long/ extra long/long reach

HIGH PERFORMANCE TD DRILLS

FEATURES

- Reinforced core geometry for higher feed rates
- Special flute form for effective chip evacuation
- Special nano grain carbide raw material with an optimum balance of hardness and toughness
- High performance coating for superior wear resistance at higher cutting speeds

FUNCTIONS & BENEFITS

- Universal geometry which can be used for Cast Iron and Steel
- Higher productivity

- High feed rate
- Stable core contributing to lower breakages and rejection rates.

RANGE

- Standard 1mm- 20mm in L/D 3 -5 Solid Drills
- Standard 3mm 20mm in L/D 3 -5-7 Through Coolant Drills
- Specials 1mm 32mm

DHD DEEP HOLE DRILLING

FEATURES

- Reinforced Core Design
- Superior Surface Treatment
- 4 Margins to Guide
- High Performance Coating
- Optimized Flute Design

FUNCTIONS & BENEFITS

- Stable cutting edge
- Better Chip Evacuation

- Better Hole Straightness
- Superior Tool Life
- Eliminate Breakages

RANGE

3mm to 16mm Available in 12X, 15X, 20X

CARBIDE DRILLING TOOLS

TMRT CARBIDE REAMERS

ABOUT TMRT - TOTEM MULTIFLUTE REAMING TOOLS

- These reamers are designed for the highest metal removal rates from diameter 1.5mm to 12mm as a std
- All standard reamers are ground to an ISO H7 tolerance class hole to address most common applications.
- Special coatings and lead chamfer configurations enable high-speed machining of steel, stainless steel, cast iron, and non-ferrous materials at high speeds.

FEATURES & BENEFITS

- · Higher Productivity and Profitability
- Longer tool life with increased hole and surface quality
- Highest metal removal rate at higher speeds and feeds due to reaming-specific low cobalt grades and substrates.
- Intermediate diameters from 1.5mm to 20mm can be offered as per various lead chamfer configuration as a custom solution.
- All TMRT reamers are also offered with internal coolant supply.

GENERAL PURPOSE SOLID CARBIDE DRILLS

F226 SOLID CARBIDE DRILLS 3X STUB LENGTH DRILLS

RANGE

1mm to 20mm

F224 SOLID CARBIDE DRILLS 5X JOBBER LENGTH DRILLS

RANGE

1mm to 20mm

CARBIDE CENTER DRILLS IN DIN333

CENTER DRILL AVAILABLE IN DIN 333 STANDARD IN LH/RH WITH BOTH FORM A & FORM B

RANGE

1mm to 8mm

SPOTTING DRILLS WITH TIN COATING

60 DEGREE SPOTTING DRILLS,

Right-hand helix, standard length Cut Shank Dia. = h6 tolerance range; point angle tolerance $+0^{\circ}/-1^{\circ}$

RANGE: 2mm to 16mm

90 DEGREE SPOTTING DRILLS.

Right-hand helix, standard length Cut / Shank Dia. = h6 tolerance range; point angle tolerance $+0^{\circ}/-1^{\circ}$

RANGE: 2mm to 16mm

120 DEGREE SPOTTING DRILLS,

Right-hand helix, standard length Cut / Shank Dia. = h6 tolerance range; point angle tolerance $+0^{\circ}/-1^{\circ}$

RANGE: 2mm to 16mm

CHAMFER TOOLS WITH TIN COATING

60 DEGREE COUNTERSINK TOOLS WITH 4 FLUTES

RANGE

3 mm to 16 mm

90 DEGREE COUNTERSINK TOOLS WITH 4 FLUTES

RANGE

3mm to 16mm

High Performance Cutting Tools

CARBIDE DEBURRING TOOLS

TUNGSTEN CARBIDE ROTARY BURRS

Workpiece Material	Workpid	Cut Type					
			Standard (Single)	Supreme (Double)	Deluxe (Diamond)	Aluma	Chip Breaker
Steel (P)	Non Hardened, non heat treated steel upto 1200 N/ mm²(<35 HRc)	Constructional Steels, Carbon Steel, Tool Steels, Non Alloyed Steels, Case Hardened Steels, Steel Casting	√	√	√		
,	Hardened, Heat treated steels exceeding 1200 N/ mm²(>35 HRc)	Tool Steels, Tempering Steels, Alloyed Steels, Steel Casting	V	√			
Stainless Steel (M)		Austenitic and Ferritic High Grade Steels			√		√
	Soft Non-Ferrous Metals	Aluminium Alloys, Brass, Copper, Zinc				√ √	
Non-Ferrous Metals (N)	Hard Non-Ferrous Metals	Bronze, Titanium/Titanium Alloys, Very Hard Aluminium Alloys (High Si content)	√	√	√		
	Heat Resistant Alloys	Nickel based Alloys, NiCo Alloys (Aircraft engine and turbine construction)	√	√	√		
Cast Iron (K)		Grey Cast Iron, Spheroidal Graphite Cast Iron	√	√	√		
Plastic /Other Materials		Fiber Reinforced Plastic, Thermoplastics Hard Rubber				√ √	

Series	Shape Description	Totem Reference
SA/ZYA	Cylindrical without end cut	С
SB/ZYAS	Cylindrical with end cut	CE
SC/WRC	Cylindrical with radius end	В
SD/KUD	Ball Shape	S
SE/TRE	Oval shape burr	0
SF/RBF	Tree shape with radius end	ТВ
SG/SPG	Tree shape with point end	Т
SH	Flame shape	F
SL/KEL	Cone with radius burr	К
SM/SKM	Cone shaped burr	A
SN	Inverted cone shape burrs	N
RIM	Rim shape burrs	R

- Ask your local representative about our long shank program –Available in 4",5",6",7",8",9"10",11"& 12"
- All sizes available as a special in left hand cut
- Coarse cut burrs available on request
- Full carbide burrs available on request

BURR SETS

We also offer burr case sets in 6 mm and 3 mm shank

BS1 - C8, B6, S4, TB3, T3, F4, K2, A3 BS2 - C4, B3, S3, TB2, T2, F3, K6, A11

MINI BS1 - MC1, MC5, MBO, MB1, MSO, M01, MTB2, MT5,

MF1, MK3, MA5, MA3

JOBBER, TAPER & REDUCED SHANK DRILLS

FEATURES

- Made from Premium Grade HSS Steel
- Manufactured in State of Art CNC machine setup

FUNCTIONS & BENEFITS

- An excellent general purpose drill with conventional 118° point angle
- Stable Cutting edge
- Better chip evacuation
- Better hole straightness
- Superior Tool life

SERIES	STANDARD	RANGE
HSS Parallel Shank Twist Drills – Jobber Series	IS 5101 : 2002, DIN 338 : 1984	1mm to 20mm & 3/64" to 13/16"
HSS Taper Shank Twist Drill – Fully Ground Taper Shank Drills	IS 5103 : 2002, DIN345 : 1986	8mm to 75mm & 3/8" to 2"
HSS Reduced Shank Drills	-	13.5mm to 30mm

M35 SERIES – BLACK & GOLD DRILLS

- Made from premium grade High Speed Steel (5% Cobalt)
- Special Black & Gold surface treatment to increase lubricity & reduce friction
- The strong web construction provides greater strength & rigidity to the drill
- Precision ground 135° Split Point angle is Self Centring & reduces Thrust during application

FUNCTIONS & BENEFITS

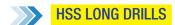
- High performance drills suitable for Production applications & also for tough Maintenance applications
- Well suited for drilling on Stainless Steel & challenging Alloy Steel materials
- Operating at higher feeds

SERIES	STANDARD	RANGE
HSS Parallel Shank Twist Drill –	IS 5101 : 2002,	1mm to 13mm &
Black & Gold (M35 Series)	DIN 338	3/64" to 1/2"

HSS STUB DRILLS

FEATURES

- An excellent general purpose drill with conventional 118° point angle
- Shorter flute & overall length increases the rigidity


FUNCTIONS & BENEFITS

- Less drill deflection, better hole accuracy & longer tool life
- Operating at higher feeds
- Ideal to use in manual hand held drilling application

SERIES	STANDARD	RANGE
HSS Parallel Shank Twist Drill –		
Stub Series	DIN 1897: 1984	3/64" to 9/16"

FEATURES

- Stable cutting edge
- Better chip evacuation
- Better hole straightness

FUNCTIONS & BENEFITS

- Well suited for deep holes
- Superior tool life

SERIES	STANDARD	RANGE	
Long Shank HSS Drill	IS 5102:2002, DIN 340: 1978, ISO 494:1975, BS 328	1mm to 13mm, 3/64" to 1/2"	

HSS DRILL CASE SETS

SERIES	DESCRIPTION	QTY PER CASE SET
HSS M2 DRILL SET	1mm to 13mm x 0.5mm	25 pcs
HSS M2 DRILL SET	2mm to 8mm x 0.5mm	13 pcs
HSS DRILLS CASE SET	1/16" to 1/4"	13 pcs
HSS DRILLS CASE SET	1/16" to 1/2"	29 pcs

CENTRE DRILLS

FEATURES

- Made from Premium Grade HSS Steel in M2 Grade & M35 Grade
- Available in BS Standard, Type A & Type –B
- Also available with TIN coating

FUNCTIONS & BENEFITS

- Excellent choice for centring application
- Stable cutting edge
- Superior tool life

STANDARD	TYPE	PILOT DIA
AS PER BS 328 : PART II – 1990	BS SERIES	3/64 to 3/16
AS PER IS 6708-2002	TYPE A	1mm to 10mm
AS PER IS 6709-2002: ISO 2540-1972	TYPE B	1.6mm to 10mm

HSS / HSS-E ANNULAR CUTTERS

FEATURES

- Made from premium grade High Speed Steel
- Multi cut geometry for ply cutting & lower friction to reach better performance of endurance & removal of chips
- Available in One Touch Shank (Universal shank Dia 3/4" or 19.05mm)

FUNCTIONS & BENEFITS

- Applicable to hole cutting & process of annular groove on various magnetic drills
- Meets requirements of hole cutting on various materials

RANGE	CUTTING DEPTH
12mm to 50mm	25mm & 50mm

TCT ANNULAR CUTTERS

FEATURES

- Premium quality Tungsten Carbide tips for ply cutting & lower friction
- Multi Cut geometry for increases chip removal

FUNCTIONS & BENEFITS

- Applicable to hole cutting & process of annular groove
- Suitable on various materials
- Universal shank 3/4" (19.05mm) for various magnetic drill machines

RANGE	CUTTING DEPTH
11mm to 40mm	40mm & 55mm

CONSTRUCTION DRILLS

FEATURES

- High quality Tungsten Carbide Tip
- Automatic Brazing process
- Produced with Chrome Vanadium hardened & tempered shank

FUNCTIONS & BENEFITS

- Guaranteed Tool life
- Extensive usage in Concrete, Natural Stone & Masonry etc.

SERIES	STANDARD	RANGE
HAMMER DRILL SDS PLUS	DIN 8035	Dia 5mm to 25mm
MASONRY GRANITE DRILL	DIN 8039, ISO 5468	Dia 4mm to 12.0mm
MASONRY CONCRETE DRILL	DIN 8039	Dia 3mm to 12mm, Dia 3/16" to 15/32"

SQUARE SECTION

STANDARD	IS 6735 / 1994
RANGE	2.50 MM TO 45 MM

STANDARD	DIN -7980
RANGE	2.50 MM TO 45 MM

STANDARD	BS1802 / 1951
RANGE	4.76 MM TO 25.40 MM

STANDARD	BBBB STANDARD SQUARE SECTION
RANGE	3.18 MM TO 38.10 MM

FLAT SECTION

STANDARD	IS 3063 / 1994
RANGE	2.50 MM TO 48 MM

STANDARD	DIN -127 B
RANGE	2.50 MM TO 48 MM

FLAT SECTION

STANDARD	BS 1802 / 1951
RANGE	3.18 MM TO 25.40 MM

STANDARD	BBBB STANDARD FLAT SECTION WITH ASA
RANGE	4.76 MM TO 31.75 MM

WAVE WASHERS

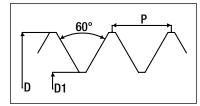
RANGE 6 MM TO 12 MM

JIS WASHERS

RANGE 5 MM TO 27 MM

STAINLESS STEEL WASHERS

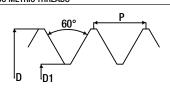
RANGE 3 MM TO 12 MM


All above washers are available in following plating

Zinc Green Passivation	Zinc White Passivation	Zinc Plating
Zinc Yellow Passivation	Trivalent Plating	Zinc Plating 40 Microns
Zinc Black Passivation	Phosphate Plating	Hot dip galvanising

ISO METRIC THREADS

ISO METRIC COARSE THREADS


ISO METRIC FINE THREADS

Metric Coarse (M)			
Nominal Diameter ØD	Pitch	Drill Size	
2	0.4	1.6	
2.2	0.45	1.75	
2.3	0.4	1.9	
2.5	0.45	2.05	
2.6	0.45	2.1	
3	0.5	2.5	
3.5	0.6	2.9	
4	0.7	3.3	
4.5	0.75	3.7	
5	0.8	4.2	
6	1	5	
7	1	6	
8	1.25	6.8	
9	1.25	7.8	
10	1.5	8.5	
11	1.5	9.5	
12	1.75	10.2	
14	2	12	
16	2	14	
18	2.5	15.5	
20	2.5	17.5	
22	2.5	19.5	
24	3	21	
27	3	24	
30	3.5	26.5	
33	3.5	29.5	
36	4	32	
39	4	35	
42	4.5	37.5	
45	4.5	40.5	
48	5	43	
52	5	47	
56	5.5	50.5	
60	5.5	54.5	
64	6	58	
68	6	62	

INE THREADS					
Metric Fine (MF)		Metr	ic Fine (I	VIF)	
Nominal		Drill	Nominal		Drill
Diameter	Pitch	Size	Diameter	Pitch	Size
ØD			ØD	4 -	0.4.5
2.5	0.35	2.15	26	1.5	24.5
3	0.35	2.65	27	1	26
3.5	0.35	3.15	27	1.5	25.5
4	0.5	3.5	27	2	25
4.5	0.5	4	28	1.5	26.5
5	0.5	4.5	28	2	26
6	0.75	5.2	30	1	29
7	0.75	6.2	30	1.5	28.5
8	0.75	7.2	30	2	28
8	1	7	32	1.5	30.5
9	1	8	32	2	30
10	0.75	9.2	33	1.5	31.5
10	1	9	33	2	31
10	1.25	8.8	33	3	30
11	1	10	35	1.5	33.5
12	1	11	36	1.5	34.5
12	1.25	10.8	36	2	34
12	1.5	10.5	36	3	33
14	1	13	38	1.5	36.5
14	1.25	12.8	39	1.5	37.5
14	1.5	12.5	39	2	37
15	1	14	39	3	36
15	1.5	13.5	40	1.5	38.5
16	1	15	40	2	38
16	1.5	14.5	40	3	37
17	1	16	42	1.5	40.5
17	1.5	15.5	42	2	40
18	1.5	16.5	42	3	39
18	2	16	45	1.5	43.5
20	1	19	45	2	43
20	1.5	18.5	45	3	42
20	2	18	48	1.5	46.5
22	1	21	48	2	46
22	1.5	20.5	48	3	45
22	2	20	50	1.5	48.5
24	1	23	50	2	48
24	1.5	22.5	50	3	47
24	2	22	52	1.5	50.5
24	1	23	52	2	50
25	1.5	23.5	52	3	49
20	1.0	20.0	Ŭ -		

FORMING/ROLL TAP PRE -**TAPPING DRILL HOLE**

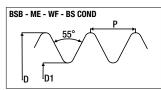
ISO METRIC THREADS

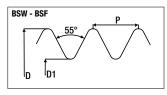
COARSE PITCH			
TAP SIZE	Pitch	Drill Size	
M 2	0.4	1.8	
M 2.5	0.45	2.3	
М 3	0.5	2.8	
M 3.5	0.6	3.25	
M 4	0.7	3.7	
M 4.5	0.75	4.15	
M 5	0.8	4.6	
M 6	1	5.55	
M 7	1	6.55	
M 8	1.25	7.5	
M 10	1.5	9.3	
M 11	1.5	10.3	
M 12	1.75	11.2	
M 14	2	13.1	
M 16	2	15.1	
M 18	2.5	16.9	
M 20	2.5	18.9	

FINE PITCH			
TAP SIZE	Pitch	Drill Size	
М 3	0.35	2.85	
M 4	0.5	3.8	
M 5	0.5	4.8	
M 6	0.75	5.65	
M 8	1	7.55	
M 10	1	9.55	
M 10	1.25	9.45	
M 12	1	11.55	
M 12	1.25	11.45	
M 12	1.5	11.3	
M 14	1.25	13.45	
M 14	1.5	13.3	
M 16	1.5	15.3	
M 18	1.5	17.3	
M 20	1.5	19.3	
M 18	2.5	16.9	
M 20	2.5	18.9	

UNC TAPS			
TAP SIZE	Pitch	Drill Size	
NO. 1	64	1.7	
NO. 2	56	2	
NO. 3	48	2.3	
NO. 4	40	2.6	
NO. 5	40	2.9	
NO. 6	32	3.2	
NO. 8	32	3.8	
NO. 10	24	4.4	
NO. 12	24	5	
1/4"	20	5.8	
5/16"	18	7.3	
3/8"	16	8.8	
7/16"	14	10.3	
1/2"	13	11.9	

UNF TAPS			
TAP SIZE	Pitch	Drill Size	
NO. 1	72	1.7	
NO. 2	64	2	
NO. 3	56	2.3	
NO. 4	48	2.6	
NO. 5	44	2.9	
NO. 6	40	3.2	
NO. 8	36	3.9	
NO. 10	32	4.5	
NO. 12	28	5.1	
1/4"	28	6	
5/16"	24	7.5	
3/8"	24	9.1	
7/16"	20	10.6	
1/2"	20	12.1	


WHITWORTH PIPE THREADS			
TAP SIZE	Pitch	Drill Size	
G 1/8"	28	9.25	
G 1/4"	19	12.5	
G 3/8"	19	16	
G 1/2"	14	20	
G 3/4"	14	25.5	
G 1"	11	32	


BRITISH STANDARD THREADS

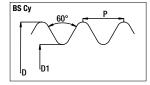
BSB			
Nominal Diameter ØD	TPI	Drill Size in mm	
1/4"	26	5.3	
5/16"	26	6.90	
3/8"	26	8.40	
7/16"	26	10.00	
1/2"	26	11.50	
9/16"	26	13.1	
5/8"	26	14.70	
11/16"	26	16.50	
3/4"	26	17.80	
7/8"	26	21.00	
1"	26	24.20	
1.1/8"	26	27.50	
1.1/4"	26	30.50	
1.3/8"	26	33.70	
1.1/2"	26	36.90	
2	26	49.60	

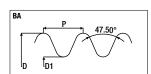
	BS COND.	
1/2"	18	11.50
5/8"	18	14.20
3/4"	16	17.50
7/8"	16	20.60
1"	16	23.80
1.1/4"	16	30.10
1.1/2"	14	36.10
2	14	48.80

ME			
Nominal Diameter	TPI	Drill Size in mm	
1/8"	40	2.55	
5/32"	40	3.30	
3/16"	40	4.00	
7/32"	40	4.80	
1/4"	40	5.50	
9/32"	32	6.10	
5/16"	32	7.00	
3/8"	32	8.60	
7/16"	26	10.50	
1/2"	26	12.10	

British Standard Whithworth Threads

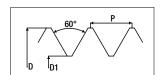
BSW					
Nominal Diameter ØD	TPI	Drill Size in mm			
1/16"	60	1.2			
3/32"	48	1.9			
1/8"	40	2.55			
5/32"	32	3.2			
3/16"	24	3.7			
7/32"	24	4.5			
1/4"	20	5.1			
9/32"	20	5.8			
5/16"	18	6.5			
3/8"	16	7.9			
7/16"	14	9.3			
1/2"	12	10.5			
9/16"	12	12.1			
5/8"	11	13.5			
11/16"	11	15.1			
3/4"	10	16.3			
7/8"	9	19.3			
15/16"	9	20.6			
1"	8	22.0			
1.1/8"	7	24.75			
1.1/4"	7	28.0			
1.3/8"	6	30.5			
1.1/2"	6	33.5			
1.5/8"	5	36.0			
1.3/4"	5	39.0			
1.7/8"	4 ½	41.3			
0.11					


British Standard Fine Threads


	BSF	
Nominal Diameter Ø D	TPI	Drill Size in mm
3/16"	32	4
7/32"	28	4.6
1/4"	26	5.30
9/32"	26	6.00
5/16"	22	6.80
3/8"	20	8.30
7/16"	18	9.70
1/2"	16	11.10
9/16"	16	12.70
5/8"	14	14.00
11/16"	14	15.50
3/4"	12	16.75
7/8"	11	19.75
15/16"	11	21.50
1"	10	22.75
1.1/8"	9	25.50
1.1/4"	9	28.50
1.3/8"	8	31.50
1.1/2"	8	34.50
1.5/8"	8	37.70
1.3/4"	7	41.00
1.7/8"	7	43.70
2"	7	47.00

WHITWORTH FORM SPECIAL				
Nominal Diameter	TPI	Drill Size		
ØD	IFI	in mm		
1/4"	24/28/32	5.3, 5.4, 5.5		
5/16"	24/40	6.75 ,7.3		
3/8"	24,40	8.4, 8.9		
7/16"	20/24/40	9.8/10, 10.5		
1/2"	20/24/40	11.5, 11.9, 12		
9/16"	20	13.1		

WHIT WORTH FURIN SPECIAL						
Nominal Diameter Ø D	TPI	Drill Size in mm				
5/8"	20	14.5				
11/16"	20	16.2				
3/4"	14/20	17.1, 17.8				
7/8"	14/16/20	20.2, 20.6, 21.0				
1"	12/20	23.0, 24.0				

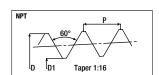

	BA					
Size	Diameter	TPI	Drill Size in mm			
0	0.2362	25.4	5.10			
1	0.2087	28.2	4.50			
2	0.1850	31.4	4.00			
3	0.1614	34.8	3.40			
4	0.1417	38.5	3.00			
5	0.1260	43	2.65			
6	0.1102	47.9	2.30			
7	0.0984	52.9	2.05			
8	0.0866	59.1	1.80			
9	0.0748	65.1	1.55			
10	0.0669	72.6	1.40			
11	0.0591	81.9	1.20			
12	0.0512	90.9	1.05			

BS Cy				
Size TPI		Drill Size in mm		
1/8"	40	2.65		
5/32"	32	3.30		
3/16"	32	4.10		
7/32"	26	4.80		
1/4"	26	5.60		
5/16"	26	7.20		
3/8"	26	8.70		
7/16"	26	10.30		
1/2"	26	11.90		
9/16"	26	13.50		
5/8"	26	15.00		
3/4"	26	18.20		
1"	24	24.50		

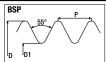
UNIFIED COARSE THREADS

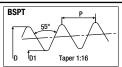
AMERICAN STANDARD

THREADS


	UNG			UNG	
Nominal Diameter Ø D	Pitch	Drill Size	Nominal Diameter Ø D	Pitch	Drill Size
# 1	64	1.55	1/2"	13	10.9
# 2	56	1.8	9/16"	12	12.3
# 3	48	2.1	5/8"	11	13.6
# 4	40	2.3	3/4"	10	16.6
# 5	40	2.6	7/8"	9	19.5
# 6	32	2.9	1"	8	22.3
# 8	32	3.5	1.1/8"	7	25
# 10	24	3.9	1.1/4"	7	28.3
# 12	24	4.5	1.3/8"	6	30.8
1/4"	20	5.2	1.1/2"	6	34
5/16"	18	6.6	1.3/4"	5	39.5
3/8"	16	8	2"	4.5	45.3
7/16"	14	9.4			

UNF				UNF	
Nominal Diameter Ø D	Pitch	Drill Size	Nominal Diameter Ø D	Pitch	Drill Size
# 0	80	1.25	7/16"	20	9.9
# 1	72	1.55	1/2"	20	11.5
# 2	64	1.85	9/16"	18	12.9
# 3	56	2.1	5/8"	18	14.5
# 4	48	2.4	3/4"	16	17.5
# 5	44	2.7	7/8"	14	20.5
# 6	40	2.9	1"	12	23.3
# 8	36	3.5	1.1/8"	12	26.5
# 10	32	4.1	1.1/4"	12	29.6
# 12	28	4.6	1.3/8"	12	32.8
1/4"	28	5.5	1.1/2"	12	36
5/16"	24	6.9	2"	12	48.6
3/8"	24	8.5			


44.5


STRAIGHT AND TAPER PIPE THREADS

	MPS			
Nominal Diameter		Drill		
ØD	TPI	Tapping With Reamer	Tapping Without Reamer	
1/16"	27	5.94	6.15	6.35
1/8"	27	8.33	8.43	8.75
1/4"	18	10.72	11.13	11.13
3/8"	18	14.27	14.68	14.68
1/2"	14	17.48	17.86	18.26
3/4"	14	22.63	23.01	23.42
1"	11.5	28.58	28.98	29.36
1.1/4"	11.5	37.31	37.69	38.1
1.1/2"	11.5	43.26	43.66	44.45
2"	11.5	55.17	55.58	56.36
2.1/2"	8	65.48	66.27	67.46

BSP					
Nominal Diameter Ø D	TPI	Drill Size in mm			
1/8"	28	8.8			
1/4"	19	11.8			
3/8"	19	15.3			
1/2"	14	19			
5/8"	14	21			
3/4"	14	24.5			
7/8"	14	28.3			
1"	11	30.8			
1.1/4"	11	39.5			
1.1/2"	11	45			
1.3/4"	11	51			
2"	11	57			

BSPT					
Nominal		Drill Size in mm			
Diameter	TPI	Tapping	Tapping		
ØD	IFI	With	Without		
עש		Reamer	Reamer		
1/16"	28	6.1	6.2		
1/8"	28	8.1	8.2		
1/4"	19	10.7	11		
3/8"	19	14.2	14.5		
1/2"	14	17.6	18		
3/4"	14	23	23.5		
1"	11	29	29.5		
1.1/4"	11	37.5	38		
1.1/2"	11	43.5	44		
2"	11	54.9	55.5		

High Performance Cutting Tools

DIVISIONAL SALES OFFICES ADDRESS / PH. NO.

AHMEDABAD

1st floor, Pranvijay building, Opp. Bata Showroom, Nr.Times of India, Ashram Road, Ahmedabad - 380009 Telephone:+91 (0) 79 26587769, 079-26580741 Fax: 079-26584618

BENGALURU

#3rd floor, Classic Building, 24 Richmond Road Bengaluru - 560025 Telephone: +91 (0) 80 43230129 Fax: +91 (0) 80 43230110

CHANDIGARH

House No. 527, Sector 11B, Chandigarh - 160002 Telephone: +91 (0) 9779177545

CHENNAI

Catholic Centre, 1st Floor, 108, Armenian Street, Chennai - 600001 Telephone: +91 (0) 44 25389890/95, Fax: +91 (0) 44 25360872

NEW DELHI

9-10/3, Laxman House, Asaf Ali Road, New Delhi - 110002 Telephone: +91 (0) 11 43000121-129 Fax: +91 (0) 11 43000130

KOLKATA

Royal Insurance Building, 5&7 N.S Road, Ground Floor, Kolkata-700001 Telephone: +91 (0) 33 22622947

MUMBAI

Saki-Powai Road Chandivali Andheri East Mumbai - 400072 Telephone: +91 (0) 22 28471861

PUNE

3rd Floor, 201/204, Fortune Plaza Thube Park, Near Sancheti Academy, Shivaji Nagar, Pune - 411005 Telephone: +91 (0) 7387385452

SECUNDERABAD

5th floor, P.V.S Mansion, Somasundaram Street, Beside Manju Theatre, S.D Road, Secunderabad - 500003 Telephone: +91 (0) 40 27814585; +91 (0) 40 27844967

AURANGABAD

B-13, MIDC, Waluj, Aurangabad - 431133 Telephone: +91 (0) 240 2553422

Forbes & Company Limited

Saki Powai Road, Chandivali, Mumbai 400 072, India **Phone:** +91 22 2847 1861 **Email:** sales@forbes.co.in

Website: www.totem-forbes.com

